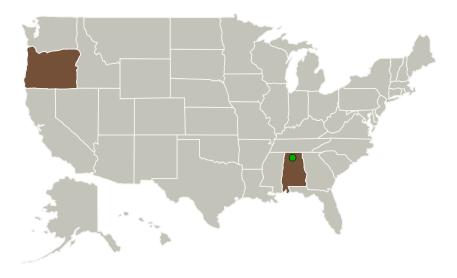
Plasma Extraction of Oxygen from Martian Atmosphere, Phase I



Completed Technology Project (2014 - 2014)

Project Introduction

Plasma techniques are proposed for the extraction of oxygen from the abundant carbon dioxide contained in the Martian atmosphere (96 % CO2). In this process, CO2 is directly decomposed in an energetic plasma forming O2 and CO, which are immediately separated. The Phase I project will clearly demonstrate the feasibility of achieving these goals by focusing on key aspects of the technology, such as efficient microwave plasma conversion at relevant pressures and processing rates as well as effective techniques for O2 separation from product gases. System mass and energy efficiency of this novel technology will be compared to those for SOA processes. The Phase II program will advance the technology through a more in depth development effort to the point where a fully functional prototype will be assembled and tested. Successful culmination of this effort will result in a self-contained, energy efficient technique that can be utilized by robotic precursor missions to Mars to stockpile oxygen in support of future manned missions to the planet.

Primary U.S. Work Locations and Key Partners

Organizations Performing Work	Role	Туре	Location
UMPQUA Research Company	Lead Organization	Industry	Myrtle Creek, Oregon
Marshall Space Flight Center(MSFC)	Supporting Organization	NASA Center	Huntsville, Alabama

Plasma Extraction of Oxygen from Martian Atmosphere Project Image

Table of Contents

Project Introduction Primary U.S. Work Locations	1
and Key Partners	1
Project Transitions	
Images	2
Organizational Responsibility	2
Project Management	
Technology Maturity (TRL)	2
Technology Areas	3
Target Destinations	3

Plasma Extraction of Oxygen from Martian Atmosphere, Phase I

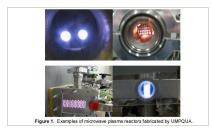
Completed Technology Project (2014 - 2014)

Primary U.S. Work Locations	
Alabama	Oregon

Project Transitions

0

June 2014: Project Start



December 2014: Closed out

Closeout Documentation:

• Final Summary Chart(https://techport.nasa.gov/file/137551)

Images

Project Image

Plasma Extraction of Oxygen from Martian Atmosphere Project Image (https://techport.nasa.gov/imag e/132981)

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Organization:

UMPQUA Research Company

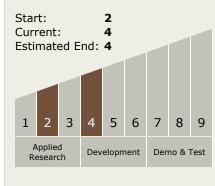
Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Project Management

Program Director:

Jason L Kessler


Program Manager:

Carlos Torrez

Principal Investigator:

Richard Wheeler

Technology Maturity (TRL)

Small Business Innovation Research/Small Business Tech Transfer

Plasma Extraction of Oxygen from Martian Atmosphere, Phase I

Completed Technology Project (2014 - 2014)

Technology Areas

Primary:

- TX07 Exploration Destination Systems
 - ☐ TX07.1 In-Situ Resource Utilization
 - □ TX07.1.3 Resource Processing for Production of Mission Consumables

Target Destinations

The Sun, Earth, The Moon, Mars, Others Inside the Solar System, Outside the Solar System

